

SIES Collegeof Arts, Science & Commerce (Autonomous) Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for T.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2019–2020)

SEMESTER V THEORY

Title of Course	PROBABILITYAND DISTRIBUTIONTHEORY						
Course Code	Uni	t	Topics		Lectu We		Credi
]	I	PROBABILITY I		1		
	Ι	Ι	PROBABILITY II		1		
PAPER I SIUSSTA51	п	II	JOINT MOMENT GENERATIN FUNCTION, TRINOMIAL AND MULTINOMIAL DISTRIBUTIO		1		2.5
	Г	V	BIVARIATE NORMAL DISTRIBUTION		1		
Title of Course	TH	EOR	Y OF ESTIMATION				
Course Code	Uni	t	Topics		Lectu We		Credi
]	I	POINT ESTIMATION AND PROPERTIES OF ESTIMATOR		1		
PAPERII SIUSSTA52	Ι	Ι	MVUE AND METHODS OF ESTIMATION		1		2.5
	I	II	BAYESIAN ESTIMATION		1		
	Γ	V	CONFIDENCE INTERVAL		1		
Title of Course		B	BIOSTATISTICS				
Course Code	Uni	t	Topics		Lectu We		Credi
]	I	EPIDEMIC MODELS		1		
	Ι	Ι	BIOASSAYS		1		
PAPER III	IJ	II	CLINICAL TRIALS		1		2.5
SIUSSTA53	Γ	V	BIOEQUIVALENCE		1		
Title of Course	ELI	EME	NTS OF ACTUARIAL SCIENCE				
Course Code	Uni	t	Topics		Lectu We		Credi
PAPER IV SIUSSTA54]	I	MORTALITY TABLES		1		
	Ι	Ι	COMPOUND INTEREST AND ANNUITIES CERTAIN		1		2.5
	Π	II	LIFE ANNUITIES		1		1
	Г	V	ASSURANCE BENEFITS		1		
			PRACTICALS	I			
Course Code			Practicals based on	Lect	tures/	Cree	dits

Course Code	Practicals based on	Lectures/ Week	Credits
SIUSSTAP51	SIUSSTA51	4	
	SIUSSTA52	4	3
SIUSSTAP52	SIUSSTA53	4	3
	SIUSSTA54	4	

SEMESTER VI	
THEORY	

Title of Course	DIS	TRIBUTIONTHEORY AND STOCHAS	STIC PROCI	ESSES
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	ORDER STATISTICS	1	
	II	GENERATING FUNCTIONS	1	2.5
PAPER I	III	STOCHASTIC PROCESSES	1	4.0
SIUSSTA61	IV	QUEUING THEORY	1	
Title of Course	TESTI	NG OF HYPOTHESES		
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	MOST POWERFUL TESTS	1	
PAPER II SIUSSTA62	тт	UNIFORMLY MOST POWERFUL	1	1
510551A02	II	& LIKELIHOOD RATIO TESTS	1	2.5
	III	SEQUENTIAL PROBABILITY RATIO TESTS	1	- 2.3
	IV	NON-PARAMETRIC TESTS	1	
Title of Course	OPERATIONS RESEARCH TECHNIQUES			
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	INVENTORY CONTROL	1	
	II	REPLACEMENT	1	
PAPER III SIUSSTA63	III	SIMULATION	1	2.5
5105511105	IV	CONTROL CHARTS & ACCEPTANCE SAMPLING	1	
Title of Course		PREDICTIVE MODELLIN	NG	
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	LINEAR MODELS	1	
	II	LINEAR REGRESSION I	1	2.5
PAPER IV SIUSSTA64	III	LINEAR REGRESSION II	1	
510551A04	IV	CLASSIFICATION	1	

PRACTICALS

Course Code	Practicals based on	Lectures/	Credits
		Week	
SIUSSTAP61	SIUSSTA61	4	
	SIUSSTA62	4	3
SIUSSTAP62	SIUSSTA63	4	3
	SIUSSTA64	4	

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER V PAPER I

- To acquire in-depth knowledge of probability theory.
- To understand significance of correlation using bivariate normal distribution.

Course Code	Title	Credits
SIUSSTA51	PROBABILITY AND DISTRIBUTION THEORY	2.5 Credits (60 lectures)
Unit I : PROBABI	LITY I	15 Lectures
Basic definitions: R	andom Experiment, Outcome, Event, Sample Space,	
Complementary, Mu	utually Exclusive, Exhaustive and Equally Likely Events.	
Mathematical, Statis	stical, Axiomatic and Subjective probability.	
Ordered samples and	on Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics.	
Unit II :PROBABI	LITY II	15 Lectures
Theorems on Proba	bility of realization of :	
At least one, Exactly		
Matching and Guess		
Conditional Probabi Independence of two		
Polya's urn model		
Unit III: JOINT M	OMENT GENERATING FUNCTION, TRINOMIAL AND	15 Lectures
MULTI	NOMIAL DISTRIBUTION	
_	perties of Moment Generating Function (MGF) of two random e and continuous type. Necessary condition for independence of two	
Concept and definit		
Trinomial distribution		
	moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. onal distributions. Means & Variances.	
u u u u u u u u u u u u u u u u u u u	ent between (X, Y) . Distribution of the Sum X+Y.	
Extension to Multin		
$p_1+p_2,+p_{k-1}+p_k=$		
	X_j). Conditional probability distribution of X_i given $X_j = x_j$	

Unit IV: BIVARIATE NORMAL DISTRIBUTION	15 Lectures
Definition of joint probability distribution (X, Y). Joint Moment Generating function,	
moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. Marginal & Conditional distributions. Means	
& Variances. Correlation coefficient between the random variables. Necessary and	
sufficient condition for the independence of X and Y. Distribution of aX+bY, where 'a'	
and 'b' are constants.	
Distribution of sample correlation coefficient.	
Testing the significance of a correlation coefficient.	
Fisher's z – transformation.	
Tests for $H_0:\rho = 0$, $H_0:\rho = \rho_0 \& H_0:\rho_1 = \rho_2$ Confidence interval for ρ .	

1. Probability-1
2. Probability -2
3. Probability -3
4. Joint Moment Generating function
5.Trinomial & Multinomial Distribution
6. Bivariate Normal Distribution
7. Tests for correlation and Interval estimation

REFERENCES

- 1. Biswas S.(1991). Topics in Statistical Methodology, First edition: Wiley Eastern Ltd.
- 2. ChandraT.K.&ChatterjeeD.(2005). *A First Course in Probability*, Third Edition: Narosa Publishing House.
- 3. Feller W. (1968). *An introduction to probability theory and it's applications,* Volume 1, Third edition :Wiley Eastern Limited.
- 4. Gupta S C & KapoorV K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & CraigA. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A. (2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. KapurJ. N.&Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and Company.
- 8. MoodA. M., GraybillF. A.&BoyesD. C. (1974).*Introduction to the theory of Statistics*, Third edition, McGraw- Hill Series.

PAPER II

- To learn methods of estimation and properties of estimators.
- To use Bayesian approach in estimation.

Course Code	Title	Credits
SIUSSTA52	THEORY OF ESTIMATION	2.5 Credits (60 lectures)
Unit I: POINT ES	STIMATION AND PROPERTIES OF ESTIMATOR	15 Lectures
Notion of a parame	eter and parameter space. Problem of Estimation,	
Definitions of Stat	istic, Estimator and Estimate.	
Properties of a goo	od estimator.	
Unbiasedness: De	finition of an unbiased estimator, biasedestimator, positive and	
negative bias, Rest	alts on unbiased estimators.	
Consistency: Defin	nition, Condition for consistency	
Sufficiency: Defin	nition, Neyman Factorization Theoremand Sufficient statistic for	
Exponential family	of probability distributions.	
Relative efficiency	of an estimator.	
Unit II: MVUE A	ND METHODS OF ESTIMATION	15 Lectures
MVUE.Fisher Lower Bound Method of Maxim function of unknow Method of Momen		
	Im Chi-square and Modified Minimum Chi-square.	15 1
Bayesian Estimati	IAN ESTIMATION on: Prior distribution, Posterior distribution, Loss function, Risk olution under Squared Error Loss Function (SELF) and Absolute n.	15 Lectures
Unit IV:CONFID	ENCE INTERVALESTIMATION	15 Lectures
Interval Estimation		
-	dence limits. Confidence Intervals based on asymptotic property listant confidence interval for the parameters of standard	

- 1. Properties of Estimator
- 2. Minimum Variance Unbiased Estimator
- 3.Method of Estimation -1
- 4. Method of Estimation -2
- 5. Bayes' Estimation
- 6. Confidence Interval

REFERENCES:

- 1. Arora S. & Bansi Lal (1989) *New Mathematical Statistics*: Satya Prakashan, New Delhi
- 2. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons
- 3. HoelP.G.(1966). *Introduction to Mathematical Statistics*, Fourth Edition: John Wiley & Sons Inc.
- 4. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 5. Hogg R. V.&Tannis E. A. (2014). *Probability and Statistical Inference*, Ninth Edition: Collier McMillan Publishers.
- Kapur J. N.&Saxena H.C. (2010) *Mathematical Statistics*, Fifteenth Edition : S. Chand & Company Ltd.
- Rohatgi V.K.&Ehsanes Saleh A.K. Md.(2008). An introduction to Probability Theory and Mathematical Statistics, Second Edition: Wiley series in Probability and Statistics. Miller I., Miller M.& Freund J.E. (1999) John E. Freund's Mathematical Statistics, Sixth Edition: Pearson Education Inc.

PAPER III

- To appreciate role of Statistics in Biology.
- To understand need, ethics and norms of clinical trials.

Course Code	Title	Credits
SIUSSTA53	BIOSTATISTICS	2.5 Credits (60 lectures)
Unit I : EPIDEMIC The features of Epid Simple mathematica removals, Host Vect Chain binomial mod individual chains and and its asymptotic va Unit II: BIOASSA Meaning and scope Quantal Response as LD50. Probit analys Indirect assays. Dose Linearizing transform parallel line assays. Interval Estimate of	15 Lectures 15 Lectures	
Unit III: CLINICA Introduction to clinic Common terminolog Study Protocol, Case Randomized control Over). Types of Trials: Infe Inclusion/Exclusion Analysis of Variance Concept of odds rati	15 Lectures	
Unit IV: BIOEQUI Definitions of Gener Pharmakokinetic (PI Estimation of PK pa Designs in Bioequiv Advantages of Cross Analysis of Parallel ANOVA and 90% c Confidence Interval	15 Lectures	

1.	Epidemic models
2.	Direct Assays
3.	QuantalResponse Assays
4.	Parallel line Assay
5.	Clinical Trials
6.	Bioequivalence

<u>REFERENCES</u>:

- 1. Bailey N.T.J. (1975). *The Mathematical theory of infectious diseases*, Second edition: Charles Griffin and Co. London.
- 2. Bolton S. & Bon C. (2009). *Pharmaceutical Statistics*, Fifth edition: Marcel Dekker Inc.
- 3. Das M.N & Giri N.C.(1986). *Design and Analysis of Experiments*, Second edition: Wiley Eastern
- 4. Finney D.J. (1964). *Statistical Methods in Biological Assays*, First edition: Charles Griffin and Co. London
- 5. Fleiss J.L. (1999). *The Design and Analysis of Clinical Experiments*. Second edition: Wiley and Sons
- 6. Friedman L. M., Furburg C. D. ,Demets D. L.(2015). *Fundamentals of Clinical Trials*. Fifth edition: Springer Verlag.

7. Shein-Chung-Chow:(2008)*Design and Analysis of Bioavailability & Bioequivalence studies*, Third Edition: Chapman & Hall/CRC Biostatistics series.

- 8. Wayne D. W. (2013). *Biostatistics- A Foundation for Analysis in the Health Sciences*, Tenth Edition: Wiley Series in Probability and Statistics.
- 9. Zar Jerrold H. (2013). Biostatistical Analysis, Fifth edition: Pearson's education.

PAPER IV

- To comprehend Vital statistics
- To study formulation of policies in insurance industry

Course Code	Title	Credits
SIUSSTA54	ELEMENTS OF ACTUARIALSCIENCE	2.5 Credits (60 lectures)
Unit I : MORT	ALITY TABLES	15 Lectures
mortality function Estimation of μ_x mortality: Gomp	Meaning, Uses, Methods of obtaining Vital statistics.Various ns. Probabilities of living and dying. The force of mortality. from the mortality table. Central Mortality Rate. Laws of ertz's and Makeham's first law. Select, Ultimate and Aggregate Stationary and stable population. Expectation of life and eath.	
Unit II: COMP	OUND INTEREST AND ANNUITIES CERTAIN	15 Lectures
Accumulated val Varying rates of Present and accu without deferment Present value for period. Present and accu whensuccessive frequency differe		
Redemption of lo	nt from that with which interest is convertible.	
Unit III: LIFE ANNUITIES Present value in terms of commutation functions of Life annuities and Temporary life annuities (immediate and due) with and without deferment period. Present values of variable, increasing life annuities and increasing Temporary life annuities (immediate and due).		15 Lectures
Unit IV:ASSUR	15 Lectures	
Present value of Pure endowmen Whole life assura assurance Net premiums: N for various assur Office premiums		

1.	Mortality tables 1
2.	Mortality tables 2
3.	Annuities 1
4.	Annuities 2
5.	Life annuities
6.	Assurance benefits

REFERENCES:

- 1. Dixit S.P., Modi C.S.&Joshi R.V.(1991). *Mathematical Basis of Life Assurance*, First edition (Reprint): Insurance Institute of India.
- 2. Gupta S. C. &. Kapoor V. K. (2014). *Fundamentals of Applied Statistics*, Fourth edition: Sultan Chand& Sons.
- 3. Neill A. (1977). *Life Contingencies*, First edition: Heineman educational books, London

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER VI PAPER I

- To study order statistics and generating functions useful in research
- To learn stochastic processes to understand its application in queuing theory

Course Code	Title	Credits
SIUSSTA61	DISTRIBUTIONTHEORY AND STOCHASTIC	2.5 Credits
51U551A01	PROCESSES	(60 lectures)
Unit I :ORDE	R STATISTICS	15 Lectures
	order Statistics based on a random sample.	
	Cumulative distribution function of r th order statistic, Probability	
•	ns of the r th order statistic, Joint Probability density function of the	
	rder statistic (r <s), all="" density="" function="" joint="" n<="" of="" probability="" td=""><td></td></s),>	
	cs, Probability density function of Median (in the case of odd	
sample sizes) a		
Unit II :GENI	ERATING FUNCTIONS	15 Lectures
Definitions of	generating function and probability generating function. Expression	
for mean and v	ariance in terms of generating functions. Definition of a	
convolution of	two or more sequences. Generating function of a convolution.	
Generating fun	ctions of the standard discrete distributions. Relation between:	
Bernoulli and I		
distributions in		
Unit III: STOCHASTIC PROCESSES		15 Lectures
Definition of s	ochastic process. Postulates and difference differential equations	
for:Pure birth p	process, Poisson process with initially 'a' members, for a =0 and	
a >0,Yule-Fur		
process with μ_1		
Derivation of H		
Unit IV: QUE	UING THEORY	15 Lectures
Basic elements of the Queuing model.		
Roles of the Po		
Derivation of S		
probabilities an		
(M/M/1):(GE		
$(M/M/c)$: $(GD/N/\infty)$, $(M/M/\infty)$: $(GD/\infty/\infty)$, $(M/M/R)$: $(GD/k/k)$		

- 2. Order statistics -2
- 3. Generating Function
- 4. Stochastic Processes
- 5. Queuing Theory -1
- 6. Queuing Theory -2

<u>REFERENCES</u>:

- 1. Biswas S.(1991). Topics in Statistical Methodology, First edition: Wiley Eastern Ltd.
- 2. Feller W. (1968). *An introduction to probability theory and it's applications*, Volume 1, Third edition :Wiley Eastern Limited.
- 3. Gupta S. C.& Kapoor V. K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh Edition, Sultan Chand & Sons.
- 4. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- Hogg R. V. & Tanis E.A. (2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 6. Kapur J. N.&Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and company.
- 7. Medhi J: (2013). Stochastic Processes, Second edition: Wiley Eastern Ltd.
- 8. Mood A. M., Graybill F. A.&Boyes D. C. (1974).*Introduction to the theory of Statistics*, Third edition, McGraw- Hill Series.
- 9. Taha H.A.(2010). *Operations Research: An introduction*, Ninth edition: Prentice Hall of India Pvt. Ltd.

PAPER II

- To study testing statistical hypotheses for fixed and variable sample sizes
- To understand applications non parametric tests used in social sciences

Course Code	Title	Credits
SIUSSTA62	TESTING OF HYPOTHESES	2.5 Credits (60 lectures)
Unit I : MOST	POWERFUL TESTS	15 Lectures
Definitions of Alternative Hyp errors, Level of function of a tes Definition of m alternative hypo	ost powerful test of size α for a simple hypothesis against a simple othesis. Neyman-Pearson fundamental lemma.	15.
Definition, Exis	SormLy MOST POWERFUL & LIKELIHOOD RATIO TESTS stence and Construction of uniformly most powerful (UMP) test. io principle. Definition of test statistic and its asymptotic stement only).	15 Lectures
Unit III: SEQU	JENTIAL PROBABILITY RATIO TESTS	15 Lectures
alternative hyp	procedure for testing a simple null hypothesis against a simple othesis. Its comparison with fixed sample size test procedure. Vald's SPRT of strength (α , β).	
Unit IV: NON-	PARAMETRIC TESTS	15 Lectures
parametric test sample Nonpar Mann–Whitney exact test.	parametric tests. Distinction between a parametric and a non .Concept of a distribution free statistic. Single sample and two rametric tests: Sign test, Wilcoxon's signed rank test, Run test, test, Median test, Kruskal Wallis test, Friedman test, Fisher's astification of the test procedure for small & large samples.	

1. Testing of Hypothesis]	1
--------------------------	---	---

- 2. Testing of Hypothesis 2
- 3. Likelihood Ratio Tests
- 4. SPRT
- 5. Non Parametric test 1
- 6. Non Parametric test 2

<u>REFERENCES</u>:

- 1. Arora S. & Lal B. (1989) *New Mathematical Statistics*: Satya Prakashan, New Delhi
- 2. Biswas S.(1991). *Topics in Statistical Methodology* First edition: Wiley Eastern Ltd.
- 3. Daniel W.W..(2000)*Applied Non Parametric Statistics* Second edition Boston-Houghton Mifflin Company
- 4. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A. .(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. Lehmann, E. L.(2008). *Testing of Statistical Hypothesis*, Third edition: Wiley &sons
- 8. Pawagi V.R.&Ranade S.A. *Statistical Methods Using R Software:*Nirali Publication
- 9. Siegal S., Castellan N. J. (1988). *Non Parametric Statistics for Behavioral Science*, Second edition : Mc Graw Hill Publishing Co.
- 10. Wald A. (1947). *Sequential Analysis* .First edition: John Wiley & Sons , New York

PAPER III

Objectives:

- To comprehend knowledge of industry problems such as inventory, replacement
- To study the techniques used to check and control quality of the product

Course Code	Title	Credits
SIUSSTA63	OPERATIONS RESEARCH TECHNIQUES	2.5 Credits (60 lectures)
Unit I:INVENTOR	Y CONTROL	15 Lectures
instantaneous repleni uniform rate of replen instantaneous repleni model. Probabilistic models: without setup cost. U Unit II: REPLACE	s:Single item static EOQ models forConstant rate of demand with shment, with and without shortages. Constant rate of demand with nishment, with andwithout shortages. Constant rate of demand with shment withoutshortages, with at most two price breaks. Price break Single period with Instantaneous demand (discrete and continuous) niform demand (discrete and continuous) without set up cost.	15 Lectures
-	eplacement of items that fail completely: Individual replacement and	
Simulation. Elements from probability dist	TON applications. Types of simulation. Monte Carlo Technique of s of discrete event simulation. Generation of random numbers. Sampling ribution. Inverse method. Generation of random observations from s. Simulation techniques applied to inventory and Queuing models.	15 Lectures
Principles of control. Chart. Exponentially (CUSUM) control ch chart with variable sa Tolerance Limits, Sp Acceptance sampling		15 Lectures

SEMESTER VI : PRACTICALS BASED ON COURSE SIUSSTA63

1.	Inventory1
2.	Inventory2
3.	Replacement
4.	Simulation
5.	Control Charts
6.	Acceptance Sampling

<u>REFERENCES</u>:

- 1. Bannerjee B. : *Operation Research Techniques for Management*, First edition, BusinessBooks
- 2. Bronson R. (1997). *Schaum Series book in Operations Research,* Second edition: Tata McGraw Hill Publishing Company Ltd.
- 3. Kantiswaroop& Gupta M. (2010). *Operations Research*, Twelfth Edition: Sultan Chand & Sons
- 4. Sharma J. K. (2013). *Operations Research theory and applications*, Fifth edition : Macmillan India Ltd.
- 5. Sharma J.K. (2010). *Quantitative Techniques for Managerial Decisions*: MacMillan India Ltd.
- 6. Sharma S.D. Operations Research, Eleventh Edition: KedarNath Ram Nath& Co.
- 7. Vora N. D. (2015). *Quantitative Techniques in Management*, Fourth edition: McGraw Hill Co. Wiley & Sons, Inc.

8. Burr J. T.(2004). *Elementary Statistical Quality Control*, Second Edition ,CRC Press: Taylor & Francis Group.

- 9. Duncan A.J. (1965). Quality Control & Industrial Statistics, Third Edition
- 10. E.L. Grant. (1988). Statistical Quality Control, Second edition: McGraw Hill.
- 11. Greene W. (2017). *Econometric Analysis*, Eighth edition: McMillan Publishing Company.

12. Hansen B. L., (1973), *Quality Control: Theory and Applications:* Prentice Hall of India Pvt. Ltd

13. Montgomery D., (2009) *Statistical Quality Control*, Sixth Edition : Arizona State University.John Wiley & Sons, Inc.

PAPER IV

- To distribute data into different classes on the basis of their characteristics.
- To comprehend modelling techniques used in prediction.

Course Code	Title	Credits
SIUSSTA64	PREDICTIVE MODELLING	2.5 Credits (60 lectures)
Maximum Likel estimators. Con regression coeffi of the Estimato variance. Confid Unit II: LINEAR Linear regression model, Derivation (for one and two e (without proof). C Procedure of testin coefficients, Signi explanatory variab Unit III: LINEAR Autocorrelation: C Least Square (GL) Heteroscedasticity Godfrey test. Wei Multicollinearity: Pairwise Correlation	on Model $Y = X\beta + e$ where e follows Independent N(0, σ ²). ihood and Least square Estimators of β and σ ² . Properties of the fidence Intervals for β and σ ² . Testing Significance of the cient β. Gauss-Markoff Theorem for Full rank Model. Properties r, Estimation of Linear function of parameters $l'\beta$. Mean and ence Interval and Testing of significance of $l'\beta$. REGRESSION I model with one or more explanatory variables. Assumptions of the of Ordinary Least Square (OLS) estimators of regression coefficients, xplanatory variables models). Properties of least square estimators oefficient of determination R ² and adjusted R ² . ng :Overall significance of the model, Significance of individual ficance of incremental contribution of explanatory variable for two oles model. Confidence intervals for the regression coefficients. R REGRESSION II Concept, Detection using Run Test, Durbin Watson Test, Generalized S) method. : Detection using Spearman's Rank correlation test,Breusch-Pagan- ghted Least Square (WLS) estimators Detection usingR square & t ratios,Variance Inflation Factor (VIF), on between regressors, using OLS estimators in presence of autocorrelation, heteroscedasticity	15 Lectures 15 Lectures
	egression with Qualitative Independent Variable.	15 Lectures
Logistic Regression Model, Estimation Hosmer-Lemeshan Concept of Multir	on Models: Introduction to Binary Logistic Regression, Statistical a of Parameters using MLE, Odds Ratio, w Test for goodness of fit, Classification Table. nomial and ordinal logistic regression. or (kNN) Algorithm, Weighted kNN, Naïve Bayes.	

1. Linear Models
2. Linear regression model 1
3. Linear regression model 2
4. Logistic Regression
5. kNN and Naïve Bayes
6. Decision Trees

<u>REFERENCES</u>:

- 1. Hastie, R. Tibshirani&J. Friedman. (2009) *The Elements of Statistical Learning, Data Mining, Inference and Prediction*,:Springer Series in Statistics.
- 2. HosmerD. W., LemeshowJr.& SturdivantS, R. X.(2013). *Applied Logistic Regression*: John Wiley & Sons,
- 3. Montgomery D., Peck E. & Vining G. (2012).*Introduction to linear regression analysis*, Fifth Edition :Arizona State University. John Wiley & Sons, Inc.
- 5. Kshirsagar A.M.(1983). A course in Linear Models

EXAMINATION PATTERN

20 Marks.

Internal Assessment of Theory per Course per Semester

Class Test
 Project / Assignment / Presentation etc.
 20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of two hours duration and 60 marks based on the four units shall be held for each course.

Pattern of Theory questionpaper:

There shall be four compulsory questions of 15 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit IIIQuestion 4 based on Unit IV.

Semester End Practical Examination per Course

1. Journal	5 Marks.
2. Viva Voce	5 Marks.
3. Practical Examination	40 Marks.

At the end of the semester, examination of 1hour 30 minutes duration and 40 marks shall be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III, Question 4 based on Unit IV.